If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-130x+4190=0
a = 1; b = -130; c = +4190;
Δ = b2-4ac
Δ = -1302-4·1·4190
Δ = 140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{140}=\sqrt{4*35}=\sqrt{4}*\sqrt{35}=2\sqrt{35}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-130)-2\sqrt{35}}{2*1}=\frac{130-2\sqrt{35}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-130)+2\sqrt{35}}{2*1}=\frac{130+2\sqrt{35}}{2} $
| 5(y+2/5)=-13y= | | -24=-8w+4 | | 91=-3(7x-1)+4 | | 1.2+n+4.25=7 | | 2x-5=5-9x-27 | | 124=4(1+6r) | | 0.9=r-9.8 | | 3(x-1)-2x(x+1)=5 | | 14b^2-3b+34=0 | | 5x-6x=6+6 | | 2p=p+87 | | 100+20t-3t^2=0 | | 5x-6x=6 | | 168=-6(7r-7) | | 9w-28+6w-5=5w | | 14b^2+34=0 | | -5(7x-8)+4x=-84 | | 88=4(3x-2) | | (2x-5)-(x+1)=20 | | -7y-18=-81 | | 9w-28+5w+6w-5=180 | | -171=-8(7+3x)+5 | | 4/3=a+1/3 | | 9w-28+5w=6w-5=180 | | 3x-6=36+6 | | 126=6(8b-3) | | (3x+2)=-15 | | (2x+9)=(4x-11) | | 274=2-8(6n-4) | | k^2−100k^2=0. | | -8m-24=88 | | -3x=4+7x10x |